The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome.
نویسندگان
چکیده
Recent studies have reported that alleles in the premutation range in the FMR1 gene in males result in increased FMR1 mRNA levels and at the same time mildly reduced FMR1 protein levels. Some elderly males with premutations exhibit an unique neurodegenerative syndrome characterized by progressive intention tremor and ataxia. We describe neurohistological, biochemical and molecular studies of the brains of mice with an expanded CGG repeat and report elevated Fmr1 mRNA levels and intranuclear inclusions with ubiquitin, Hsp40 and the 20S catalytic core complex of the proteasome as constituents. An increase was observed of both the number and the size of the inclusions during the course of life, which correlates with the progressive character of the cerebellar tremor/ataxia syndrome in humans. The observations in expanded-repeat mice support a direct role of the Fmr1 gene, by either CGG expansion per se or by mRNA level, in the formation of the inclusions and suggest a correlation between the presence of intranuclear inclusions in distinct regions of the brain and the clinical features in symptomatic premutation carriers. This mouse model will facilitate the possibilities to perform studies at the molecular level from onset of symptoms until the final stage of the disease.
منابع مشابه
Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects some adult carriers of pre-mutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. FXTAS is thought to be caused by a toxic 'gain-of-function' of the expanded CGG-repeat FMR1 mRNA, which is found in the neuronal and astrocytic intranuclear inclusions associated with ...
متن کاملCGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome
Fragile X-associated tremor ataxia syndrome (FXTAS) results from a CGG repeat expansion in the 5' UTR of FMR1. This repeat is thought to elicit toxicity as RNA, yet disease brains contain ubiquitin-positive neuronal inclusions, a pathologic hallmark of protein-mediated neurodegeneration. We explain this paradox by demonstrating that CGG repeats trigger repeat-associated non-AUG-initiated (RAN) ...
متن کاملNeuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS).
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder that affects carriers, principally males, of premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. Clinical features of FXTAS include progressive intention tremor and gait ataxia, accompanied by characteristic white matter abnormalities on MRI. The neuropatholog...
متن کاملIntranuclear inclusions in neural cells with premutation alleles in fragile X associated tremor/ataxia syndrome.
F ragile X syndrome is generally considered to be a non-progressive neurodevelopmental disorder in which carriers of premutation alleles (,55 to 200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene are largely unaffected. However, we have recently identified a new syndrome among male carriers, characterised by tremor and/or ataxia, cognitive deficits, parkinsonism, and autonomic d...
متن کاملFMRpolyG-positive inclusions in CNS and non-CNS organs of a fragile X premutation carrier with fragile X-associated tremor/ataxia syndrome
Fragile X-associated Tremor/Ataxia syndrome (FXTAS), a late-onset monogenetic neurodegenerative disorder, is caused by a CGG-repeat expansion (55-200) in the 5′ UTR of the fragile-X mental retardation 1 gene (FMR1) on the X-chromosome [1]. The prevalence of the FMR1 premutation (PM) is about 1:855 in males and 1:291 in females [2]. Approximately 45.5% of male and 16.5% of female PM carriers old...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 12 9 شماره
صفحات -
تاریخ انتشار 2003